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Abstract
We investigate the parametric fluctuations in the quantum survival probability
of an open version of the δ-kicked rotor model in the deep quantum regime.
Spectral arguments (Guarneri I and Terraneo M 2001 Phys. Rev. E 65
015203(R)) predict the existence of parametric fractal fluctuations owing to
the strong dynamical localization of the eigenstates of the kicked rotor. We
discuss the possibility of observing such dynamically-induced fractality in
the quantum survival probability as a function of the kicking period for the
atom-optics realization of the kicked rotor. The influence of the atoms’ initial
momentum distribution is studied as well as the dependence of the expected
fractal dimension on finite-size effects of the experiment, such as finite detection
windows and short measurement times. Our results show that clear signatures
of fractality could be observed in experiments with cold atoms subjected
to periodically flashed optical lattices, which offer an excellent control on
interaction times and the initial atomic ensemble.

PACS numbers: 05.45.Mt, 42.50.Vk, 05.60.Gg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Experiments with cold atoms nowadays offer unique possibilities for the study of single particle
motion and collective particle dynamics in tailored optical or magnetic potentials. The atomic
centre-of-mass motion can be prepared and controlled with unprecedented precision, what
allows experimentalists to realize and study many toy models of condensed matter physics
[1]. Since in experiments with cold atomic gases noise and perturbations can be driven to a
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minimum, which often is indeed negligible, such set-ups offer a great advantage with respect
to solid-state realizations.

In this paper, we discuss the possibility of observing sensitive quantum effects which
manifest in a fractal variation of a transport function with respect to a well-tunable control
parameter. Similar fractal fluctuations of the transmission probability across solid-state
samples have been measured recently [2] in systems whose underlying classical phase space
typically contains mixed regular-chaotic structures. Most features of these experiments can be
understood semiclassically as a consequence of the phase space topology [3–5]. However, the
precise origin of the observed fractal conductance fluctuations in these experiments is not yet
fully understood [6], and, in fact, various theoretical models [7, 8] predict fractal conductance
fluctuations for mesoscopic devices. Our aim is to design a concrete experimental scenario
in which parametric fractal fluctuations could be measured with high precision cold-atom
set-ups. In such experiments the cross-over between mixed and completely chaotic classical
dynamics can be scanned easily [9–11], and hence fractal transmission probabilities could be
measured in a regime where classical or semiclassical arguments do not apply.

As was shown by Guarneri and Terraneo [7], fractal fluctuations in the transmission
probability of a quantum scattering problem arise naturally as a consequence of the spectral
properties of the system. The two essential conditions on the spectrum are (i) a power-law
distribution of decay widths and (ii) uncorrelated real parts of the energy spectrum. Moreover,
various eigenstates have to contribute together to the decay, a fact which is expressed formally
by requiring that (iii) the average decay width is much larger than the mean level spacing.
Based on these conditions, the theory of [7] explained the occurrence of quantum fractal
fluctuations in the δ-kicked rotor model in the deep quantum realm [12], where semiclassical
arguments cannot explain the occurrence of fractality.

In this paper we study a similar dynamical situation as in [12], yet with important
modifications which fully account for the actual experimental realization of the kicked rotor.
Using either cold or ultracold atomic gases, the kicked rotor is realized by preparing a cloud
of atoms with a small spread of initial momenta, which is then subjected to a one-dimensional
optical lattice potential, flashed periodically in time [13]. Let us call kL the wave number
of the optical lattice, τ̃ the flashing period (‘kicking’ period), p̃ the momentum of the single
atom, x̃ its centre-of-mass position, V0 the maximum potential depth, and M is the atomic
mass. It is convenient to adopt rescaled units by noting that pR = h̄kL is the photon
recoil momentum and ER = (h̄kL)2/2M is the recoil energy [9, 11, 14]. So we define
p = p̃/2pR, x = x̃ · 2kL, τ = τ̃ · 8ER/h̄. The kicking strength of the lattice is expressed by
k = V0/(8ER). The Hamiltonian now reads in dimensionless units [15]

Ĥ (t ′) = p2

2
+ k cos x

∞∑

t=1

δ(t ′ − tτ ). (1)

Owing to the δ-interaction of the potential with the atoms, the time evolution operator
between kicks can be explicitly written in a factorized form, extremely convenient for numeric
simulations. The derivation of the one-period evolution operator exploits the spatial periodicity
of the potential by Bloch’s theorem [11, 16]. This defines the quasimomentum β as a
constant of the motion, the value of which is the fractional part of the physical momentum
p in dimensionless units p = n + β(n ∈ N). Since β is a conserved quantum number,
p can be labelled using its integer part n only. The spatial coordinate is then substituted
by θ = x mod (2π) and the momentum operator by N̂ = −i∂/∂θ with periodic boundary
conditions. The one-kick propagation operator for a fixed quasimomentum β is thus given
by [16]

Ûβ = e−ik cos(θ̂ ) e−iτ(N̂+β)2/2. (2)
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In close analogy to the transport problem across a solid-state sample, we follow [12] to
define the quantum survival probability as the fraction of the atomic ensemble which stays
within a specified region of momenta while applying absorbing boundary conditions at the
‘sample’ edges. If we call ψ(n) the wave function in momentum space and n1 < n2 the edges
of the system, absorbing boundary conditions are implemented by the prescription ψ(n) ≡ 0
if n � n1 or n � n2. This truncation is carried out after each kick. This procedure mimics
the escape of atoms out of the spatial region where the dynamics induced by the Hamiltonian
(1) takes place. If we denote by P̂ the projection operator on the interval ]n1, n2[ the survival
probability after t kicks is

Psurv(τ ; t) = ‖(P̂Ûβ)tψ(n, 0; τ)‖2. (3)

We will show in the following that signatures of fractality in the survival probability could
be observed in modern atom-optical experiments, where the initial atomic ensemble has a
finite, non-zero width in momentum space. In contrast to the work of [12], where the initial
quasimomentum is scanned to arrive at the parametric observable Psurv(β), we investigate
the behaviour of Psurv(τ ) as a function of the best controllable parameter in the experiment,
namely the time τ which elapses between two successive kicks [10, 14, 17, 18].

After a brief review of the results of Guarneri and Terraneo [7] applied to the dynamically
localized kicked rotor (section 2), we discuss in section 3 our choices of the system parameters,
which are guided by the experimental possibilities as well as the conditions stated in [7]. Our
central results on the occurrence of fractal survival probabilities are presented for the limit of
long-interaction times (section 4) as well as for experimentally accessible initial momentum
distribution and interaction times (section 5). Section 6 finally concludes the paper.

2. Conditions for fractal fluctuations of the survival probability

Without a priori assumptions on the integrability or chaoticity properties of the classical
analogue of the quantum system of interest, Guarneri and Terraneo [7] showed that fractal
conductance fluctuations occur if certain conditions on the quantum spectrum of the open
system are fulfilled.

The first condition, (i) a power-law distribution of the decay widths, is indeed present in
the weakly opened quantum kicked rotor [19]. We verified this by diagonalizing the one-kick
evolution operator Ûβ , after representing it in the basis of momentum states. The matrix was
cut at the positions n1 and n2 to mimic the required absorbing boundary conditions.

If either of the two cut-offs (n1 or n2) is chosen sufficiently large, the shape of the wave
function in momentum space supports an exponential tail, independent of the evolution time
(after a short transit time ∝k2 at which dynamical localization has fully developed [20, 21]).
For such a situation in the localized regime, the probability density of decay widths was found
to be ρ(	) ∝ 	−1 over more than 10 orders of magnitude in 	, consistent with previous
studies [5, 19, 22–24]. If, on the other hand, n1 and n2 were decreased, dynamical localization
is gradually destroyed and the distribution deforms continuously, giving more weight to larger
widths and less to the very small ones. Such a deformation was observed in the analogous
context of ionization rates of microwave-driven hydrogen Rydberg atoms [24]. Our choice
of n1 and n2 represents a compromise between the maximum width of typical experimental
detection windows in momentum space and a guaranteed dynamically localized momentum
distribution over a substantial interval of momenta. In the next section, we state the precise
values of n1 and n2 which we investigated in this paper.

In the regime of strong dynamical localization, the quasienergy spectrum of the δ-kicked
rotor has a Poisson-like statistics [25]. Under the same conditions as stated above on the



2480 A Tomadin et al

cut-off values n1 and n2, this property of the real parts of the quasienergy spectrum remains
even when the system is opened [22, 26]. Hence, also the second requirement for fractality
of [7], that (ii) the energy spectrum consists of uncorrelated sequences, is fulfilled in good
approximation for the opened δ-kicked rotor in the presence of dynamical localization.

The third condition stated in [7] is that the opening of the system is weak, but still sufficient
to guarantee that (iii) the average decay width is much larger than the mean level spacing.
For our choice of parameters and cut-off values n1 and n2, also this condition of overlapping
‘resonance peaks’ is fulfilled, as we verified numerically from the quasienergy spectrum of
the truncated matrix representation of Ûβ .

As exercised in [7], the conditions (i)–(iii) are sufficient to guarantee self-affine
fluctuations in the quantum survival probability, with a predicted fractal dimension Df which
is related to the exponent of the width distribution ρ(	) ∝ 	−α by the following general
formula Df = 1 + α/2 ≈ 1.5 for α ≈ 1.

We repeat that parametric fractal fluctuations in the survival probability of dynamically
localized kicked rotor have already been found in [12], before their origin could be explained
in [7]. In this work, however, we scan a different parameter than the one used in [12], which
corresponded to quasimomentum. Here we use the kicking period τ as control parameter,
which can be much better controlled in state-of-the-art experiments [10, 14, 17, 18] than the
initial value of momentum [11, 18, 27–29]. On the other hand, the use of τ confronts us with
a new problem which is discussed in the following section.

3. Choice of parameters

3.1. Dynamical localization and classical chaos

For our analysis the value of the kicking strength k was chosen in the range 2–6, or
kτ = 2.8–8.4, going along with the transition from local to global chaos with increasing
k in this range [20, 21]. For our choice of kicking periods τ ≡ h̄eff > 1 [20, 21], classical
trajectories wandering about hierarchical structures of the classical phase space will not have a
quantum analogue because those structures are too small to be resolved by the wave function.
This means that the observed fluctuations indeed arise from quantum localization effects and
not from a semiclassical diffusion process.

3.2. The kicking period as control parameter

As reviewed in section 2, the sufficient conditions for the occurrence of fractal fluctuations
are fulfilled for choices of τ for which the δ-kicked rotor exhibits dynamically localized
behaviour. However, besides dynamical localization the quantum δ-kicked rotor supports
‘quantum resonant’ motion for specific values of τ and quasimomentum β [20, 30]. Our goal
is to avoid as much as possible the impact of the quantum resonances on the dynamics, such
that we can clearly identify the origin of the fractality of the survival probabilities. Since
the parameter we scanned is the kicking period τ , we verified that no signatures of quantum
resonances are found in the analysed small range of τ and for the applied, finite kick numbers.

The quantum kicked rotor shows ballistic growth of momentum, shortly a quantum
resonance, if

τ ∈ {4πs/q; s, q ∈ N}, β ∈ {m/2s, 0 � m < s;m, s ∈ N}, (4)

and in these cases the time dependence of energy on the number of kicks is [20, 30]

E(t; τ) = ηt2 + O(t), with η � (k/q)2q . (5)
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The denominator q in the rational factor of τ is called the order of the resonance. The set
containing all the resonances has zero Lebesgue measure in any interval of kicking periods,
but we do care about it because the dependence on τ of the survival probability Psurv(τ ; t) is
continuous for a fixed, finite number of kicks and the fluctuations we want to observe should
be caused by dynamical localization and not by quantum resonances. The preceding growth
estimate (5) establishes that a resonance is suppressed for a time that increases more than
exponentially with its order. One way to avoid contributions from the resonances is to use
a judicious choice of the range of τ and sampling grid G used for numerical simulations or
experiments. We chose

G = {τi = τ0 + i · δτ, i ∈ {0, . . . , m − 1}}, with m = 104, (6)

where the value of τ0/4π is a fraction of the golden mean:

τ0

4π
= 14

10

s

q
(
√

5 − 1), s = 6142, q = 95 403,
s

q
− 1

4π(
√

5 − 1)
< 10−11. (7)

For δτ = 9.98 × 10−7, also all other grid points in G are incommensurable to 4π up
to the used significant digits. We verified that the lowest order resonance in the range
[τmin, τmax] ≈ [1.4, 1.41] has q = 107 and that there is no crowding of resonances of order
q � 2000 anywhere in this interval. Since we are not going to use times longer than 104

kicks in our simulations, and kicking strength of order unity, the quadratic term is suppressed
dramatically by the coefficient η in (5), for all occurring resonances q � 107. Finally, we
explicitly checked throughout the simulations that localization is at work by inspecting the
average energy and, for selected values of τ , the shape of the wave function in momentum
space, which shows a characteristic exponential decrease as explained below in section 3.3.

We also tried a quantitative approach for the choice of the grid along the τ axis. If some
resonance were important, any numerical selection method could detect it and prefer grids
with points away from the quantum resonances. Our method is based on the maximization in
the ‘grids space’ of a function F(G(τ0, δτ )) that adds a contribution from each resonance, up
to a maximum order, within a given interval, and this contribution is the larger the farther the
resonance position in τ (see equation (4)) is from the nearest point of the grid. This means that
a ‘higher mark’ is achieved by the grids whose points are away from the resonances. Formally
we defined

S = {4πs/q} ∩ {q � qmax} ∩ [τmin, τmax]

F(G(τ0, δτ )) =
∑

τr∈S

fr(min{|τr − τg|; τg ∈ G}),

f (0)
r (�τ) = �τ ; f (1)

r (�τ) = �τ 2; f (3)
r (�τ) = �τ/qr .

Different definitions of the weight function fr(�τ) allow us to give more weight to resonances
with smaller q � 107 (i.e., to those which influence the time evolution of a wider neighbourhood
along the τ axis). Of course, this programme requires detailed knowledge of the dynamics near
the high-order resonances of q � 107, but this goal has not been theoretically accomplished
yet. None of our weight functions could resolve the presence of a resonance by a sharp
minimum when applied to a specific grid.

As a consequence of our choice of the interval of kicking periods and grid points in this
interval, no signatures of quantum resonances are expected to manifest for interaction times
of up to 104 kicks.



2482 A Tomadin et al

3.3. The opening of the system

The probability decay arises from the open geometry of our system, which is implemented
mathematically by imposing absorbing boundary conditions in momentum space [12]. This
means that

ψ(n) ≡ 0 if n � n1 < 0 or n � n2 > 0.

The requirement on the boundaries is that they must guarantee dynamical localization (see
section 2). This happens if the wave function on the boundaries is ‘so’ small that the kicking
potential cannot spread a ‘substantial’ part of the wave function out of the boundaries.
The compatibility of the values of the parameters involved—t, k, n1, n2—is checked using
a consequence of the conditions that grant a fractional dimension of the graph of the survival
probability (see section 2). This consequence is that the square of the wave function decreases
with time keeping its shape constant, in the limited momentum lattice representing the open
system.

Let us recall that the typical shape of a one-dimensional localized wave function is
exponential, extending in a region intermediate between the support of the initial state in
momentum space and the absorbing boundary. In a linear-logarithmic plot the wave function
is (apart from erratic fluctuations around its mean decrease) a line in this intermediate region;
constancy of the shape means constancy of the steepness of the line. This criterion, which is in
fact a localization criterion, was used as a prerequisite for all our simulations. If the boundaries
are too far away from the initial state, the decay is extremely slow (a consequence of strong
dynamical localization). To avoid long waiting times (which are hard to reach experimentally),
asymmetric boundaries have been used, with 1 ≈ |n1| � |n2|, and a statistical initial ensemble
of orbits at t = 0 with p = 0 and randomly distributed phases θ , i.e., ψ(n; t = 0) ≡ δn,0.
The wave function in momentum space ψ(n; t) then evolves to a shape which is asymmetric
with respect to n = 0. On the side where the cut-off is closer to the origin, the wave function
does not decrease exponentially, and in a linear-logarithmic plot the momentum distribution
shows a broad and smooth maximum, while at n = 0 a sharp peak would be present if we
choose 1 � |n1| ≈ |n2|. Although the exponential decrease on the side of the larger cut-off
n2 is influenced by the opening at n1, the shape indeed remains constant for a sufficiently large
number of kicks in a range [n̄, n2[, where the precise value of n̄ ≈ 50, . . . , 100 depends on
the choice of n1.

4. Numerical results for fixed quasimomentum

The central result of this paper is the computation and fractal analysis of the survival probability
Psurv(τ ; t, β, k, n1, n2) as a function of τ , while the other parameters are fixed for each curve.
Our fractal analysis comprehends the computation of (a) the box-counting dimension [7, 31],
(b) a variational algorithm dimension [31], together with the calculation of the (c) correlations,
and (d) variances of the graph Psurv(τ ). Several curves are computed with different choices
of parameters. Our results are essentially independent of quasimomentum β and the applied
boundaries n1 and n2, whose choice is guided by the considerations stated in section 3.3.

Numerical algorithms, of course, do not distinguish the origin of the irregular profile of
a fractal graph. To make sure that the observed fractality is actually produced by quantum
effects, we verified that the increase of k in the range 2–6 (for τ � 1.4) is accompanied
by a monotonic increase of the fractal dimension. This is a signature of fractality owing to
dynamical localization of a weakly open quantum system. As k reaches a certain saturation
value ksat ≈ 4.5 (where kτ > 5 exceeds the global chaos border [20, 21] and quantum chaos is
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Figure 1. The survival probability as a function of τ for k = 5, β = 0, n1 = −1, n2 = 200 and
different kick numbers t. The magnification in the lower panel shows that, as t increases, self-affine
fluctuations occur on finer and finer scales in τ .

fully developed) we verified that the fractal dimension ceases its substantial growth observed
in the range k = 2–4.5.

At fixed kick number t, the survival probability is in principle a smooth function of τ on
a sufficiently small scale δτ . After a grid in τ is chosen, fractality is expected to increase
as t increases due to the appearance of fluctuations on finer and finer scales. A finer grid
requires a longer time to yield a ‘fractal graph’ down to finer scales, because it takes longer
for the fluctuations to appear on a scale smaller than the grid resolution. This scenario, where
fractality is generated by ‘dynamical intrusion’, is exemplified in figure 1 where the survival
probability in the localized regime is shown after various interaction times. The calculation
of the fractal dimension as a function of time shows a monotonic increase from unity up to a
value between 1.6 and 1.7.

We computed the survival probability Psurv(τ ) for various interaction times of up to 104

kicks. The latter value is much larger than the kick numbers of the order 100 typically realized
in state-of-the-art experiments [9, 32]. Nevertheless, the monotonic behaviour in time can
itself be used as an important signature of fractality. In figure 2(a)–(c) the profile of Psurv(τ ; t)

is shown along with a small, yet representative part of three successive magnifications over
two orders of magnitude in the kicking period τ . The real parts of the quasienergy spectrum
are presented in figure 2(d)–(f ) in the same ranges of τ . The visibly avoided crossings are a
consequence of quantum chaotic dynamics and their ubiquitous presence on different scales in
τ naturally compares to the self-affine fluctuations of the survival probability. This comparison
highlights the fact that the observed fractality is indeed a consequence of quantum chaos.

The box-counting plot in figure 3(a) shows the number of adjacent squares N(δ) of width
δ along the τ axis necessary to box all points of the curve from figure 2(a). The scaling
law N(δ) ∼ δ−Df thus determines the fractal dimension Df . The variational method (b) is a
substantial refinement of the box-counting which typically gives more reliable results [31]. It
involves the division of the fully analysed τ interval in R subintervals, and the total variation of
the curve on groups of 2l adjacent subintervals is computed. The average of these quantities is
called VR(l) and the value of R which gives the best scaling of the form VR(l) ∼ l−Df is used.
In addition to the direct fractal analysis of Psurv(τ ), we computed the autocorrelations and the
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Figure 2. (a), (b), (c) show the survival probability of figure 1 after t = 104 kicks at different
magnifications. For the same parameters, (d), (e), (f ) show the real parts of the quasienergies as a
function of τ (obtained as the eigenphases of the evolution operator (2), which was represented in
the basis of momentum states as a finite matrix in the range n ∈ ]n1, n2[ and then diagonalized). We
see that the fluctuations on finer and finer scales are accompanied by ubiquitous avoided crossings
in the eigenvalue spectrum (note that for better visibility in (d)–(f ) only a small part of the full
spectral range [−π, π ] is shown).

1 1.5 2 2.5 3 3.5 4

Log
10

[1/δ]

2

3

4

5

6

L
og

10
[N

(δ
)]

-5.5 -5 -4.5 -4

Log
10

[δ]

-9.3

-9

-8.7

-8.4

-8.1

L
og

10
[C

(δ
)]

-2 -1.6 -1.2 -0.8 -0.4
Log

10
[1/l] 

-0.8
-0.4

0
0.4
0.8
1.2
1.6

2

L
og

10
[V

R
(l

)]

-5.5 -5 -4.5 -4

Log
10

[δ]

-9

-8.7

-8.4

-8.1

-7.8

L
og

10
[V

(δ
)]

(a)

(b)

(c)

(d )

Figure 3. Fractal analysis of the survival probability from figure 2(a) using the following methods:
(a) box counting, (b) variational method, (c) correlations, (d) variances. The exponents of the fits
(solid lines) are Df = 1.6 (a) and 1.7 (b), acorr = 0.8 (c) and avar = 0.8 (d).

variances of the fluctuating graphs. The correlations C(�τ) = 〈Psurv(τ ) · Psurv(τ + �τ)〉τ are
shown in figure 3(c), the variances V (�τ) = 〈|Psurv(τ + �τ) − Psurv(τ )|2〉τ in figure 3(d).
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Table 1. Fractal analysis of the survival probabilities after 104 kicks. Df,bc states to box counting
dimension, while Df,v is obtained via the variational method. acorr and avar are the exponents of
the fits to the correlations and variances, respectively. The estimated uncertainty derived from our
fits (over finite ranges between one and two orders of magnitude of the power-law scaling, as e.g.
in figure 3) is ±0.1 for the fractal dimensions as well as the exponents.

k β n1 n2 Df,bc Df,v acorr avar

2.0 0.0 −1 200 1.1 1.2 1.5 1.6
3.5 0.0 −1 200 1.3 1.4 1.0 1.0
4.0 0.0 −1 200 1.4 1.5 0.8 0.8
4.5 0.0 −1 200 1.5 1.6 0.8 0.8
5.0 0.0 −1 200 1.6 1.7 0.8 0.8
5.0 0.33 −1 200 1.6 1.7 0.8 0.8
5.0 0.38 −1 200 1.6 1.7 0.8 0.8
5.0 0.0 −1 250 1.6 1.7 0.8 0.7
5.0 0.0 −1 300 1.6 1.7 0.8 0.7
6.0 0.0 −1 300 1.6 1.7 0.8 0.7

Recalling the power-law scaling of ρ(	) (see section 2), we can check the following set of
relations:

ρ(	) ∼ 	−α ⇒ Df ≈ 1 + α/2, (8)

and

C(�τ) − C(0) ∼ �τa, V (�τ) ∼ �τa with Df = 2 − a/2,

in the presence of the numerically confirmed identity between the temporal decay exponent
of Psurv(t) ∝ t−a and the exponent of the correlations [12, 22]. These relations can be used
as alternative and independent routes to the determination of the fractal dimension Df . This
follows from the fractional Brownian motion nature of Psurv(τ ), which itself originates from
the spectral properties of the opened δ-kicked rotor [7], and which determines the �τ → 0
properties of statistical quantities such as correlations and variances [33].

Table 1 reports the fractal dimensions which were obtained by the above four methods.
Df,bc and Df,v are the box counting and the variational dimension, respectively, while the
exponents of the correlations and variances are denoted as acorr and avar. The table highlights
the features already mentioned, i.e., the increase of Df for increasing the kicking strength k
and its basic independence of quasimomentum and the chosen cutoffs. The fractal dimension
saturates for k � ksat � 4.5. We verified this saturation with a series of simulations conducted
for 13 values of k ∈ [2, 6] (not all shown in table 1).

The obtained four independent methods of our fractal analysis (summarized in table 1) give
fairly consistent results with each other, with an estimated precision of ±0.1. A systematical
underestimation by box-counting method is observed, but also expected [31] when applying
it to curves with D � 1.5.

For our choice of the grid in τ (see equation (6)) we noticed by inspecting the correlations
and variances that, for k � 5, not all the fluctuations of the true curve are resolved by our
grid. This yielded systematically smaller and meaningless values for a, a problem which
does not affect the box counting and variational method that do not depend so critically upon
the values of neighbouring points of the analysed graph. Augmenting the resolution of our
grid in τ on a test interval [τ0, τ0 + 103δτ ] (cf equation (7) for the definition of τ0 and δτ )
we nevertheless were able to estimate the exponents of the correlations and the variances for
k � 5 and n2 � 250 shown in table 1.



2486 A Tomadin et al

As a final test of our hypothesis that no trace of quantum resonances can be observed for
the chosen interval in τ and our maximal interaction time of 104 kicks, we analysed the survival
probability for k = 5 for two different quasimomenta β ≈ 1/3 and β = 0.378 942 469 767 714
(stated as 0.33 and 0.38, respectively, in table 1). The latter value was chosen as a fraction
of the golden mean to avoid any resonance condition in β (see equation (4)). As can be seen
from table 1, no dependence on quasimomentum is found for the dynamically localized regime
(k = 5).

In this section we presented a full-featured analysis of the fractal dimension of the survival
probability Psurv(τ ), studied the dependence on the parameters t and k and observed how these
dependences provide systematical signatures of fractality caused by quantum effects. We
found that Psurv(τ ) is indeed fractal over a substantial range of scales, and its dimension
can be estimated between 1.6 and 1.7. These numbers are stable when varying the initial
quasimomentum (which is a constant of the motion) and the selected locations of the cut-offs
n1 and n2. Having in mind that the numerical determination of the fractal dimension of a
graph bears some finite error (with estimated absolute uncertainty of about ±0.1 for the data
in table 1), our results are consistent with the fractal dimension 1.5 found for fixed τ = 1.4 in
the scan of quasimomentum [12] (figure 4 in [12] indeed seems to imply a similar systematic
error as our data for the fractal dimension). Even if we scanned a different parameter than
used in [12], the theory of [7] is independent of the chosen scanning variable, as long as the
spectral premises reviewed in section 2 are fulfilled. The tendency towards a slightly larger
fractal dimension in our data could, however, be related to the distribution of decay widths,
whose precise form is sensitive to the chosen values of n1 and n2 (see [24] and discussion in
section 2). Hence a slight deviation of our results from those of [12] is not surprising, since
the finite-size effect of the boundary conditions may be different depending on whether τ or
β is used as a scanning parameter [12].

5. Signatures of fractality for realistic experimental conditions

5.1. Experimental control of parameters

To realize an experiment where the fractal dimension of the survival probability, as studied in
the preceding section, can be measured, it is necessary to address some principal problems of
atom-optics kicked rotor experiments.

Control over the kicking strength k is granted with a precision of a few per cent [11, 14].
Anyway, table 1 tells us that a variation of k of the order up to 25% is not crucial. Time is one
of the best controlled experimental parameters, and this feature makes it an ideal candidate
for implementing an experiment to search for fractal fluctuations. Kicking periods between
about hundred nanoseconds and a few hundred microseconds are available, with a maximal
precision of a few nanoseconds [10, 14, 17, 18]. For caesium atoms, this range corresponds
to dimensionless kicking periods (see section 1) τ ≈ 10−2 . . . 18, and a maximal precision of
δτ � 10−4. This precision implies that about 100 points could be scanned in our analysed
interval in τ , which would be sufficient for a rough, qualitative verification of our predictions.

Any experiment will have a finite detection window of observable momentum classes.
The actual width of this window is typically determined by the imaging resolution and by the
minimal signal-to-noise ratio of the measurement device [9, 14, 27]. The detection window also
determines a maximum interaction time after which the detection of a constantly decreasing
atomic ensemble (due to the open boundary conditions) becomes meaningless. In other words,
the maximum number of kicks is limited by the precision disposable in the determination of the
final momentum distribution. Correspondingly, in our results reported below we choose the
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minimal kicking strength k = 4.5 where the fractal dimension starts to saturate (see section 4)
and a maximum interaction time of 500 kicks. The latter implies that we can choose a wider
grid in τ because very fine structures do not develop for interaction times t � 500. We used
δτ ′ = 10δτ, τ ′

0 = τ0 and m′ = m/10 (cf equation (7)). A problem will certainly be the
realization of our idealized absorbing boundary conditions at specific momentum classes of
the atoms. Here methods using, for instance, external cutting potentials—such as so-called
radio-frequency knives [34] or equally operating additional lasers—could be thought of.

5.2. The experimental initial ensemble

To approach real experimental scenarios, we shall analyse the survival probability for a smaller
number of kicks of order 100 [9, 32] and take into account an initial spread of quasimomentum
among the ensemble of cold atoms [16, 27].

For a typical ensemble of cold atoms, the momentum distribution is Gaussian-like, with a
width exceeding that of the Brillouin zone 2h̄kL, equal to 1 in our dimensionless units [9–11,
14, 27, 28, 32]. Folding produces approximately a uniform distribution in the entire Brillouin
zone, i.e., a uniform distribution of quasimomenta with a width of �β = 1 [16]. Using
atoms in the Bose–Einstein condensate phase as initial ensemble allows the experimentalist
a much better control over the width of the quasimomentum distribution [35]. Values of
�β � 0.05 have been realized in this context [18, 29, 36]. Letting the condensate expand
a little before the actual kicking evolution, allows one to reduce the atom–atom interactions
to negligible values, with only slight changes in �β [36]. As a consequence, the survival
probability, experimentally measured by counting the number of atoms contained within the
finite detection window, would be the result of an average of many independent survival
probabilities with different values of quasimomentum. The independence of probabilities
follows from the independent dynamics of the atoms [9–11, 14, 27, 28, 36], while the coherent
evolution of a single atoms is still essential for the observed behaviour.

We computed Psurv(τ ;β) for different ranges of β, and then averaged the resulting curves
to arrive at 〈Psurv(τ ;β)〉β . Figure 4 investigates the effect of averaging over β on the fractal
dimension. The survival probabilities for two fixed β are shown, together with the average for
a uniform distribution of 103 values of β ∈ [0, 0.01]. Figure 4(a) shows that the average curve
is quite smooth on large scales, but nevertheless presents fluctuations on finer resolutions,
with a fractal dimension substantially larger than unity. We verified that, by decreasing the
number of atoms in the ensemble, the dimension steadily increases. We encounter a signature
of fractality, which experiments could detect even far from the idealized limit of the one-atom
dynamics. That is, the fluctuating behaviours of the averaged curves is a direct consequence
of fluctuations of single β curves.

Figures 5(a) and (b) show the average survival probability for ensembles with the same
number of β values but with different, larger widths �β of the initial quasimomentum
distribution. Wider distributions are smoother on large scales and are not drawn in figure 5(a)
because they could not be appreciated by eye when compared to curves for �β = 0.010
and 0.025. The magnification in (b) shows that the fluctuations exhibit smaller excursions.
A fractal analysis (see figure 5(c)) by the variational method shows that the dimension Df

remains in all cases larger than unity and, moreover, does not vary monotonically as �β is
increased.

We interpret our results for finite �β in the following way: while a small range �β tends
to wash out the fractal behaviour of the curves with one fixed β, an average over larger ranges
�β tends to lift the fractal dimension again. This line follows nicely from the prediction
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Figure 4. (a) shows two survival probabilities for fixed β ≈ 0.006 554 and β ≈ 0.002 009 together
with an average of 103β values equally distributed in [0, 0.01] at t = 500, k = 4.5, n1 = −1, n2 =
200. The average curve (thick) is smoother but its fractional dimension is nevertheless greater
than unity. (b) shows the fractal analysis by the variational method for β ≈ 0.006 554 (circles)
that yields Df ≈ 1.6, for the average of 103β ∈ [0, 0.01] (diamonds) with Df ≈ 1.2, and for the
average of only 10 values of β in the same interval (squares) that gives the intermediate value
of Df ≈ 1.4.
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Figure 5. (a) average of the survival probability (for k = 4.5 and after 500 kicks) over 103 values
of β uniformly distributed in [0, 0.01] (solid) and [0, 0.025] (dotted) together with a survival
probability for a fixed value β ≈ 0.65. (b) Same as (a) for 103 values of β uniformly distributed
in the shown intervals. (c) Fractal analysis by the variational method for the survival probabilities
shown in (a), (b). The fractal dimensions are obtained by linear fits (shown only for �β = 1)
through the symbols Df ≈ 1.6 (inverse pyramids, β ≈ 0.65), 1.2 (circles, β ∈ [0, 0.01]), 1.2
(squares, β ∈ [0, 0.025]), 1.3 (diamonds, β ∈ [0, 0.05]), 1.4 (pyramids, β ∈ [0, 0.1]), and 1.5 (left
triangles, β ∈ [0, 1]).
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Figure 6. (a), (c) average of the survival probability over 103 values of β uniformly distributed in
[0, 0.1] and [0, 1], after (a) 100 and (c) 200 kicks and for k = 4.5. The enhancement of self-affine
fluctuations with time is clearly visible. (b) and (d) show the fractal analysis by the variational
method for (a) and (b), respectively, corresponding to β ≈ 0.65 (inverse pyramids), or 103 values
of β uniformly distributed in [0.01] (circles), [0.025] (squares), [0, 0.05] (diamonds), [0, 0.1]
(pyramids), [0, 1] (left triangles). The fractal dimensions are Df ≈ 1.5, 1.2, 1.1, 1.2, 1.2, 1.4 in
(b) and 1.6, 1.2, 1.1, 1.2, 1.3, 1.5 in (d) for increasing width of the β distribution.
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Figure 7. On the left panel the survival probability as a function of β and τ is shown after
500 kicks, for k = 4.5, n1 = −1 and n2 = 200. Slices of the graph Psurv(β, τ ) are shown on the
right panel. The thick lines represent the survival probability as a function of τ that is analysed
in section 4 (we have used 103 similar curves to compute the incoherent average which is the
experimental observable, as explained in section 5.2). The thin curve lying in the plane orthogonal
to the τ axis is the survival probability Psurv(β) as a function of the quasimomentum β such as
studied in [12].

of [7] where it is argued that fractality can arise from superimposing non-fractal patterns on
appropriate scales of the scanned variable [22, 26].

Figure 6 repeats the analysis of figure 5 for t = 100 (a), (b) and t = 200 (c), (d). The
fractal dimension of each average survival probability for a definite value of �β is seen to be
a monotonic function of time, what points out once more the dynamical origin of the analysed
fluctuations. This contrasts the dependence of the fractal dimension on �β at a fixed time,
which is non-monotonic, because averaging both washes out the fluctuations of the single
curves for small �β � 0.1, while it creates new ones by superimposition for �β � 0.1.
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From a more general perspective, the survival probability Psurv(β, τ ) can be seen as a
surface lying over the plane spanned by the two variables τ and β. In [12] Psurv(β, τ ) was
analysed at fixed τ using β as a scanning parameter, i.e., a slice of the surface parallel to the
β axis was analysed. In section 4 we studied the ‘orthogonal’ problem of fixed β, using τ as a
scanning variable. Averaging over β can be interpreted as a ‘column density’, i.e., Psurv(β, τ )

integrated over the β degree of freedom. The resulting averaged curve is the observable
experimentally accessible as discussed in this section. Looking at figure 7, our results can
thus be interpreted geometrically: the fractal behaviour of the slices Psurv(τ ;β = constant) is
to a large extent preserved by the average over a typical experimental spread in β.

6. Conclusions

We considered the quantum kicked rotor, a paradigmatic model of quantum chaos, which
describes the time evolution of noninteracting cold atoms in periodically flashed optical
lattices. Imposing absorbing boundary conditions allows one to probe the transport properties
of the system, and in particular to define the survival probability of atoms on a finite region
in momentum space. For fixed kick numbers, the quantum survival probability depends
sensitively on the parameters of the system, and a self-affine structure of the survival probability
Psurv is predicted, as either the kicking period or quasimomentum is scanned.

Instead of using the initial quasimomentum β as control parameter, as done in the
numerical simulations of [12], we used the kicking period τ as scan parameter, which is much
better controllable experimentally. We verified the fractal nature of the graph of the survival
probability Psurv(τ ) in the dynamically localized regime, and obtained a fractal dimension
Df ≈ 1.6 ± 0.1 for large but finite interaction times, for which quantum resonances do not
manifest.

Any experimental set-up prepares cold atoms with a finite spread in quasimomentum.
The experimental observable is then the average of the survival probabilities over the
quasimomentum distribution. We reproduced this observable by computing the incoherent
average 〈Psurv(τ )〉β , and found that the fractal dimension of the average remains substantially
larger than unity, even for shorter interaction times of a few hundred kicks.

We conclude that the fractality in the survival probability induced by quantum chaos is
an unexpectedly robust feature and in spite of many challenging aspects (see section 5) could
be observed in a future atom-optics experiment. Apart from the experimental verification of
fractal fluctuations of purely quantum origin, a remaining open problem is whether a universal
scaling law for the fractal dimension could be found as a function of both parameters τ and β,
including quantitative predictions for the here computed averages 〈Psurv(τ, β)〉β over a finite
range of β.
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